吧 精品 电影在线观看_无码一区二区三区视频_国产欧美成人精品第一区_国内精品国产成人

返回列表頁(yè)

陶瓷基板助力高功率器件散熱消暑

陶瓷基板

引言


電路板被很多人譽(yù)為電子產(chǎn)品之母,它是計(jì)算機(jī)、手機(jī)等消費(fèi)電子產(chǎn)品的關(guān)鍵部件,在醫(yī)療、航空、新能源、汽車(chē)等行業(yè)有著廣泛應(yīng)用??v觀全球技術(shù)發(fā)展簡(jiǎn)史,每一次技術(shù)進(jìn)步都直接或間接影響著全人類(lèi)。電路板誕生之前,電子設(shè)備都包含許多電線,它們不僅會(huì)糾纏在一起,占用大量空間,而且短路的情況也不罕見(jiàn)。這個(gè)問(wèn)題對(duì)于電路相關(guān)的工作人員來(lái)說(shuō)是個(gè)非常頭疼的問(wèn)題。1925年,來(lái)自美國(guó)的Charles Ducas提出了一個(gè)前所未有的想法,即在絕緣基板上印刷電路圖案,隨后進(jìn)行電鍍以制造用于布線的導(dǎo)體專(zhuān)業(yè)術(shù)語(yǔ)“PCB”由此而來(lái),這種方法使制造電器電路變得更為簡(jiǎn)單。


電路板


當(dāng)今世界科技飛速發(fā)展促進(jìn)電子器件向集成化、微型化、高功率密度的方向發(fā)展,因此給電子器件散熱帶來(lái)了嚴(yán)峻的挑戰(zhàn)。良好散熱效果依賴于優(yōu)異的散熱結(jié)構(gòu)設(shè)計(jì)、熱界面材料、散熱基板、封裝制造工藝等?;遄鳛槌休d集成電路芯片的載體,與電路直接接觸,電路產(chǎn)生的熱量需要通過(guò)基板向外疏散。選擇一種兼具高熱導(dǎo)率與良好電絕緣性的基板材料成為解決當(dāng)下電子器件散熱問(wèn)題的關(guān)鍵。


由于傳統(tǒng)覆銅板由于低的熱導(dǎo)率以及具有導(dǎo)電性限制了在當(dāng)今高功率器件中的應(yīng)用。因此開(kāi)發(fā)出具有高熱導(dǎo)率和良好的電氣互連的基板材料成為了當(dāng)下的研究重點(diǎn)方向。目前市面上的PCB從材料大類(lèi)上來(lái)分主要可以分為三種:普通基板、金屬基板、陶瓷基板。傳統(tǒng)的普通基板和金屬基板不能滿足當(dāng)下工作環(huán)境下的應(yīng)用。陶瓷基板具有絕緣性能好、強(qiáng)度高、熱膨脹系數(shù)小、優(yōu)異的化學(xué)穩(wěn)定性和導(dǎo)熱性能脫穎而出,是符合當(dāng)下高功率器件設(shè)備所需的性能要求。


介紹


陶瓷基板制備工藝流程多、流程復(fù)雜繁瑣,一款導(dǎo)熱性能優(yōu)異的陶瓷基板離不開(kāi)性能優(yōu)異的粉體、精細(xì)的制備技術(shù)和嚴(yán)苛的測(cè)試。


1.1 陶瓷粉體


目前常用的高導(dǎo)熱陶瓷粉體原料有氧化鋁(Al2O3)、氮化鋁(AlN)、氮化硅(Si3N4)、碳化硅(SiC)和氧化鈹(BeO)等。隨著國(guó)家大力發(fā)展綠色環(huán)保方向,由于氧化鈹有毒性逐漸開(kāi)始退出歷史的舞臺(tái)。碳化硅又因?yàn)槠浣^緣性差,無(wú)法應(yīng)用在微電子電路中。Al2O3、AlN、Si3N4陶瓷粉體具有無(wú)毒、高溫穩(wěn)定性好、導(dǎo)熱性好,以及與SiSiCGaAs等半導(dǎo)體材料相匹配的熱膨脹系數(shù),得到了廣泛推廣應(yīng)用。幾種粉體的熱導(dǎo)率和綜合評(píng)價(jià)如下表所示,目前主流用于制備陶瓷基板的粉體原料還是以氧化鋁和氮化鋁為主


市場(chǎng)中粉體的制備方法主要有硅粉直接氮化法、自蔓延高溫合成法、碳熱還原法。

(1)硅粉直接氮化法和自蔓延高溫合成法是比較主流的方法,但由于反應(yīng)溫度接近甚至超過(guò)原料的熔點(diǎn),往往造成產(chǎn)物形貌不規(guī)則、ɑ相含量低、團(tuán)聚嚴(yán)重,需要進(jìn)一步破碎,在后續(xù)處理中容易引入其他雜質(zhì);

(2)碳熱還原法是具有原料豐富、工藝簡(jiǎn)單、成本低等優(yōu)點(diǎn),非常適合大批量生產(chǎn);其中碳熱還原法成為目前最常用的粉體制備技術(shù)之一。



1.2 陶瓷基板制備工藝


流延成型技術(shù)是標(biāo)準(zhǔn)的濕法成型工藝,可一次性成型制備厚度范圍在幾十微米到毫米級(jí)別的陶瓷生坯,并通過(guò)進(jìn)一步的層壓、脫脂、燒結(jié)形成陶瓷基片,主要應(yīng)用于電子基板、多層電容器、多層封裝、壓電陶瓷等。與傳統(tǒng)的粉末冶金干法制備工藝相比,流延工藝制備出的陶瓷薄片均勻性好、通透性高,在要求比較高的集成電路 領(lǐng)域深受歡迎。陶瓷基板常用的成型方法主要以流延成型為主。流延工藝的流程圖如下所示:

陶瓷基板制備工藝

流延漿料是流延成型的重要組成部分,根據(jù)溶劑性質(zhì)的不同,流延漿料又分為有機(jī)流延成型工藝和水基流延成型工藝。

(1)陶瓷粉體是流延漿料的主相,是坯片的主要成分, 影響著流延成品的導(dǎo)熱性、電阻率、介電常數(shù)、化學(xué)穩(wěn)定 性以及機(jī)械強(qiáng)度。陶瓷粉體的顆粒尺寸、粒度分布以及粉體的結(jié)晶形貌都對(duì)流延工藝以及流延膜的質(zhì)量有較大影響, 因此在選擇粉體的時(shí)候需要考慮以下特征:化學(xué)純度、顆粒尺寸、粉體形貌;
(2)粘結(jié)劑作為流延漿料體系的唯一連續(xù)相,它能包裹住粉料顆粒,并固化形成三維立體結(jié)構(gòu),增加流延膜的強(qiáng)度。粘結(jié)劑和增塑劑共同作用可以提高生坯片的強(qiáng) 度,并改善韌性與延展性,便于生坯片與載體膜的脫離以及后續(xù)加工;
(3)粉體顆粒在漿料中的分散性和均勻性與流延膜的 品質(zhì)息息相關(guān)。解決粉體團(tuán)聚的主要方式有物理分散與化學(xué)分散,而在漿料中加入分散劑是流延技術(shù)中最常用的手段;
(4)除上述成分外,流延漿料還會(huì)加入一些功能性添加 劑來(lái)改善流延膜制備過(guò)程產(chǎn)生的缺陷,如消泡劑、潤(rùn)滑 劑、均質(zhì)劑、絮凝劑、控流劑等;

陶瓷基板


1.4 陶瓷燒結(jié)


燒結(jié)是利用熱能使粉末坯體致密化的技術(shù),其具體的定義是指多孔狀態(tài)的坯體在高溫條件下,表面積減小,孔隙率降低,力學(xué)性能(機(jī)械強(qiáng)度等)提高的致密化過(guò)程。坯體在燒結(jié)過(guò)程中要發(fā)生一系列的物理化變化,如膨脹,收縮,氣體的產(chǎn)生,液相的出現(xiàn),舊晶相的消失,新晶相的形成等。在不同的溫度,氣氛條件下,所發(fā)生變化的內(nèi)容與程度也不相同,從而形成不同的晶相組成和顯微結(jié)構(gòu),決定了陶瓷制品不同的質(zhì)量和性能。

燒結(jié)可分為有液相參加的燒結(jié)和純固相燒結(jié)兩類(lèi)。燒結(jié)過(guò)程對(duì)陶瓷生產(chǎn)具有很重要的意義。為降低燒結(jié)溫度,擴(kuò)大燒成范圍,通常加入一些添加物作助熔劑,形成少量液相,促進(jìn)燒結(jié)。陶瓷燒結(jié)是陶瓷加工中的一種重要工藝,其過(guò)程分為三個(gè)階段:預(yù)燒階段、燒結(jié)階段和冷卻階段。

預(yù)燒階段在這個(gè)階段,陶瓷制品會(huì)被放入爐子中進(jìn)行預(yù)燒處理,用來(lái)去除陶瓷中的水分和有機(jī)物質(zhì)。高溫下,水分和有機(jī)物質(zhì)會(huì)被分解并釋放出來(lái),讓制品干燥且有機(jī)物質(zhì)燃燒殆盡。這一階段的主要目的是為了減少燒結(jié)時(shí)產(chǎn)生的氣泡等缺陷。

燒結(jié)階段在預(yù)燒之后,制品會(huì)被加熱到高溫下進(jìn)行燒結(jié)。這個(gè)階段是陶瓷工藝中最關(guān)鍵的一步,也是最困難的一步。在高溫下,陶瓷顆粒會(huì)開(kāi)始熔化和結(jié)合在一起,形成一個(gè)堅(jiān)固的陶瓷結(jié)構(gòu)。這一階段需要控制好溫度、時(shí)間和壓力等因素,使得陶瓷能夠充分結(jié)合,而不會(huì)出現(xiàn)燒結(jié)不完全或者表面開(kāi)裂等缺陷。

冷卻階段在燒結(jié)完成后,制品需要進(jìn)行冷卻,使得陶瓷結(jié)構(gòu)能夠逐漸穩(wěn)定下來(lái)。如果制品過(guò)早地被取出爐子,容易導(dǎo)致熱應(yīng)力而產(chǎn)生裂紋。因此,一般會(huì)采取緩慢冷卻的方式,讓制品溫度逐漸降下來(lái)。在冷卻過(guò)程中,還需要將爐門(mén)緩慢地打開(kāi),逐漸將爐內(nèi)壓力和爐外壓力平衡,以避免制品瞬間受到外界壓力而發(fā)生破裂。



1.5 陶瓷材料的導(dǎo)熱性影響因素


高導(dǎo)熱性非金屬固體通常具備以下4個(gè)條件:構(gòu)成的原子要輕、原子間的結(jié)合力要強(qiáng)、晶格結(jié)構(gòu)要單純、晶格振動(dòng)的對(duì)稱性要高。陶瓷材料的導(dǎo)熱性的影響因素:1)原料粉體,原料粉體的純度、粒度、物相會(huì)對(duì)材料的熱導(dǎo)率、力學(xué)性能產(chǎn)生重要影響。由于非金屬的傳熱機(jī)制為聲子傳熱,當(dāng)晶格完整無(wú)缺陷時(shí),聲子的平均自由程越大,熱導(dǎo)率越高,而晶格中的氧往往伴隨著空位、位錯(cuò)等結(jié)構(gòu)缺陷,顯著地降低了聲子的平均自由程,導(dǎo)致熱導(dǎo)率降低;

2)在燒結(jié)過(guò)程,添加的燒結(jié)助劑中可以與陶瓷粉體表面的原生氧化物發(fā)生反應(yīng),形成低熔點(diǎn)的共晶熔液,利用液相燒結(jié)機(jī)理實(shí)現(xiàn)致密化。然而,燒結(jié)助劑所形成的晶界相自身的熱導(dǎo)率較低,對(duì)陶瓷熱導(dǎo)率具有不利影響,特別地,如氮化硅陶瓷常用的Al2O3燒結(jié)助劑,在高溫下會(huì)與氮化硅和其表面氧化物形成SiAlON固溶體,造成晶界附近的晶格發(fā)生畸變,對(duì)聲子傳熱產(chǎn)生阻礙,從而大幅度降低氮化硅陶瓷的熱導(dǎo)率。因此選用適合的燒結(jié)助劑,制定合理的配方體系是提升氮化硅熱導(dǎo)率的關(guān)鍵途徑。


陶瓷基板金屬化


目前導(dǎo)熱的陶瓷基板可分為HTCC(高溫共燒多層陶瓷)、LTCC(低溫共燒陶瓷)、DBC(直接鍵合銅陶瓷基板) 和DPC(直接鍍銅陶瓷基板)、活性金屬纖焊陶瓷基板(AMB)等幾種形式,其特點(diǎn)如下。

對(duì)于大功率器件而言,基板除具備基本的機(jī)械支撐與電互連功能外,還要求具有高的導(dǎo)熱性能。因?yàn)镠TCC/LTCC的熱導(dǎo)率較低,因此在高功率的器件以及IGBT模組的使用場(chǎng)景中散熱基板目前主要以DBC、DPC、AMB三種金屬化技術(shù)為主。



2.1 DPC技術(shù)


DPC技術(shù)是先其制作首先將陶瓷基片進(jìn)行前處理清洗,利用真空濺射方式在基片表面沉積 Ti/Cu 層作為種子層,接著以光刻、顯影、刻蝕工藝完成線路制作,最后再以電鍍/化學(xué)鍍方式增加線路厚度,待光刻膠去除后完成基板制作。 關(guān)鍵技術(shù)涉及激光打技術(shù)、避免孔壁熔渣、鍍銅的一致性、填孔效果。

DPC 技術(shù)具有如下優(yōu)點(diǎn):(1) 低溫工藝(300 ℃以下),完全避免了高溫對(duì)材料或線路結(jié)構(gòu)的不利影響,也降低了制造工藝成本;(2) 采用薄膜與光刻顯影技術(shù),使基板上的金屬線路更加精細(xì)(線寬尺寸 20~30 m,表面平整度低于 0.3 m,線路對(duì)準(zhǔn)精度誤差小于±1%),因此 DPC 基板非常適合對(duì)準(zhǔn)精度要求較高的電子器件封裝。 


2.2 DBC技術(shù)


DBC是陶瓷基片與銅箔在高溫下(1065℃)共晶燒結(jié)而成,最后根據(jù)布線要求,以刻蝕方式形成線路。由于銅箔具有良好的導(dǎo)電、導(dǎo)熱能力,而氧化鋁能有效控制 Cu-Al2O3- Cu 復(fù)合體的膨脹,使 DBC 基板具有近似氧化鋁的熱膨脹系數(shù)。關(guān)鍵技術(shù)涉及鍵合工藝、如何減少孔隙、翹曲的控制、精確控溫、氧化層的控制。

DBC 具有導(dǎo)熱性好、 絕緣性強(qiáng)、可靠性高等優(yōu)點(diǎn),已廣泛應(yīng)用于 IGBT、LD 和 CPV 封裝。DBC 缺點(diǎn)在于, 其利用了高溫下 Cu 與 Al2O3間的共晶反應(yīng),對(duì)設(shè)備和工藝控制要求較高,基板成本較高;由于 Al2O3 與 Cu 層間容易產(chǎn)生微氣孔,降低了產(chǎn)品抗熱沖擊性;由于銅箔在高溫下容易翹曲變形。



2.3 AMB技術(shù)


AMB 技術(shù)是指,在 800℃左右的高溫下,含有活性元素 Ti、Zr 的 AgCu 焊料在陶瓷和金屬的界面潤(rùn)濕并反應(yīng),從而實(shí)現(xiàn)陶瓷與金屬異質(zhì)鍵合的一種工藝技術(shù)。AMB陶瓷基板,首先通過(guò)絲網(wǎng)印刷法在陶瓷板材的表面涂覆上活性金屬焊料,再與無(wú)氧銅層裝夾,在真空釬焊爐中進(jìn)行高溫焊接,然后刻蝕出圖形制作電路,最后再對(duì)表面圖形進(jìn)行化學(xué)鍍。關(guān)鍵技術(shù)涉及如何控制Ti的氧化和偏析、高溫下有機(jī)物的揮發(fā)導(dǎo)致孔洞和界面不致密的問(wèn)題

AMB工藝是金屬釬料實(shí)現(xiàn)氮化鋁與無(wú)氧銅的高溫結(jié)合,以結(jié)合強(qiáng)度高、冷熱循環(huán)可靠性好等優(yōu)點(diǎn),不僅具有更高的熱導(dǎo)率、更好的銅層結(jié)合力,而且還有熱阻更小、可靠性更高等優(yōu)勢(shì)。AMB陶瓷基板缺點(diǎn)在于工藝的可靠性很大程度上取決于活性釬料成分、焊工藝、舒焊層組織結(jié)構(gòu)等諸多關(guān)鍵因素,工藝難度大,而且還要兼顧成本方面的考慮。



應(yīng)用領(lǐng)域



3.1 高鐵、新能源汽車(chē)、風(fēng)力、5G基站用IGBT模塊 


由于 IGBT輸出功率高,發(fā)熱量大,散熱不良將損壞 IGBT 芯片,因此對(duì) IGBT封裝而言,散熱是關(guān)鍵,必須選用陶瓷基板強(qiáng)化散熱。氮化鋁、氮化硅陶瓷基板具有熱導(dǎo)率高、與硅匹配的熱膨脹系數(shù)、高電絕緣等優(yōu)點(diǎn),非常適用于 IGBT 以及功率模塊的封裝。廣泛應(yīng)用于軌道交通、航天航空、電動(dòng)汽車(chē)、風(fēng)力、太陽(yáng)能發(fā)電等領(lǐng)域。


LED封裝


縱觀LED技術(shù)發(fā)展,功率密度不斷提高,對(duì)散熱的要求也越來(lái)越高。由于陶瓷具有的高絕緣、高導(dǎo)熱和耐熱、低膨脹等特性,特別是采用通孔互聯(lián)技術(shù),可有效滿足LED倒裝、共晶、COB(板上芯片)、CSP(芯片規(guī)模封裝)、WLP (圓片封裝)封裝需求,適合中高功率LED封裝。

光伏/芯片模組


光伏發(fā)電是根據(jù)光生伏特效應(yīng)原理,利用太陽(yáng)能電池將太陽(yáng)光直接轉(zhuǎn)化為電能。由于聚焦作用導(dǎo)致太陽(yáng)光密度增加,芯片溫度升高,必須采用陶瓷基板強(qiáng)化散熱。實(shí)際應(yīng)用中,陶瓷基板表面的金屬層通過(guò)熱界面材料(TIM)分別與芯片和熱沉連接,熱量通過(guò)陶瓷基板快速傳導(dǎo)到金屬熱沉上,有效提高了系統(tǒng)光電轉(zhuǎn)換效率與可靠性。

行業(yè)分析


陶瓷基板具備散熱性好、耐熱性好、熱膨脹系數(shù)與芯片材料匹配、絕緣性好等優(yōu)點(diǎn),被廣泛用于大功率電子模塊、航空航天、軍工電子等產(chǎn)品。高功率IGBT、SiC 功率器件搭載上車(chē),刺激上游陶瓷基板的需求,推動(dòng)產(chǎn)業(yè)發(fā)展,近期多個(gè)公司宣布陶瓷基板項(xiàng)目的投產(chǎn)或擴(kuò)建計(jì)劃。


全球陶瓷基板市場(chǎng)火爆,市場(chǎng)規(guī)模穩(wěn)步增加


根據(jù)華西證劵研究所報(bào)告顯示,2020 年全球陶瓷基板市場(chǎng)規(guī)模達(dá)到 89 億美元,預(yù)計(jì) 2026 年全球規(guī)模將達(dá)到 172.9 億美元,漲幅達(dá)到 94.27%,市場(chǎng)前景廣闊。

高功率IGBT模塊持續(xù)推動(dòng)DBC/AMB陶瓷基板市場(chǎng)擴(kuò)大


DBC 陶瓷基板具有高強(qiáng)度、 導(dǎo)熱性能強(qiáng)以及結(jié)合穩(wěn)定的優(yōu)質(zhì)性能,而 AMB 陶瓷基板是在 DBC 的基礎(chǔ)上發(fā)展而來(lái)的, 結(jié)合強(qiáng)度相對(duì)更高。近年來(lái)隨著新能源汽車(chē)、光伏儲(chǔ)能行業(yè)的快速發(fā)展, IGBT 功率模塊的需求快速增長(zhǎng),對(duì)于 DBC、 AMB 陶瓷基板的需求也不斷增加。目前 DBC 陶瓷基板主要生產(chǎn)廠家有羅杰斯、賀利氏集團(tuán)、高麗化工等;AMB 陶瓷基板主要生產(chǎn)廠家有羅杰斯、日本京瓷、日本丸和等。


LED需求量提高

LED 芯片對(duì)于散熱要求極為苛刻,車(chē)載照明將進(jìn)一步提升 AlN 基板的需求。 目前單芯片 1W 大功率 LED 已產(chǎn)業(yè)化, 3W、 5W,甚至 10W 的單芯片大功率 LED 也已推出,并部分走向市場(chǎng)。這使得超高亮度 LED 的應(yīng)用面不斷擴(kuò)大,從特種照明的市場(chǎng)領(lǐng)域逐步走向普通照明市場(chǎng)。由于 LED 芯片輸入功率的不斷提高,對(duì)這些功率型 LED 的封裝技術(shù)提出了更高的要求。而傳統(tǒng)的基板無(wú)法承載高功率的熱能,氮化鋁陶瓷具有良好的導(dǎo)熱和絕緣性能,能夠提高 LED 功率水平和發(fā)光效率。功率 LED 已經(jīng)在戶外大型看板、小型顯示器背光源、車(chē)載照明、室內(nèi)及特殊照明等方面獲得了大量應(yīng)用。DPC 陶瓷基板憑借其電路精度高且制備溫度低的特點(diǎn),被廣泛用于高精度、小體積封裝產(chǎn)品中,在高功率發(fā)光二極管中被廣泛使用。數(shù)據(jù)顯示,2020 年 DPC 陶瓷基板全球市場(chǎng)規(guī)模達(dá)到 12 億美元,預(yù)計(jì) 2026 年達(dá)到 17 億美元。


第三代半導(dǎo)體SIC加速上車(chē)-AMB急速獲益


SiC 加速上車(chē),AMB 隨之受益,Si3N4陶瓷基板的熱膨脹系數(shù)與第 3代半導(dǎo)體襯底SiC晶體接近,使其能夠與SiC晶體材料匹配性更穩(wěn)定。雖然國(guó)內(nèi)AMB 技術(shù)有一定積累,但產(chǎn)品主要是 AIN-AMB基板,受制于Si3N4基片技術(shù)的滯后,國(guó)內(nèi)尚未實(shí)現(xiàn)Si3N4-AMB的商業(yè)化生產(chǎn),核心工藝被美國(guó) Rogers、德國(guó) Heraeus和日本京瓷、東芝高材、韓國(guó) KCC 等國(guó)外企業(yè)掌握。


總結(jié)


基于陶瓷基板良好的導(dǎo)熱性、耐熱性、絕緣性和低熱膨脹系數(shù)等優(yōu)點(diǎn),陶瓷基板在功率電子器件封裝中得到廣泛應(yīng)用。目前,陶瓷基板主要應(yīng)用于IGBT、LD 器件封裝、LED 封裝、芯片封裝模組等。但是有諸多限制其熱導(dǎo)率的因素, 如晶格缺陷、雜質(zhì)元素、晶格氧含量、晶粒尺寸等, 導(dǎo)致高端陶瓷基板的實(shí)際熱導(dǎo)率并不高。目前, 就如何提實(shí)際熱導(dǎo)率從而實(shí)現(xiàn)大規(guī)模生產(chǎn)還存在一些待解決的問(wèn)題:粉體顆粒尺寸、燒結(jié)助劑的選擇、實(shí)現(xiàn)大規(guī)模生產(chǎn)。但是由于陶瓷流延漿料有機(jī)物的影響,導(dǎo)致致密度不高, 而且流延成型的晶粒定向生長(zhǎng)不明顯, 如何實(shí)現(xiàn)流延片中的氮化硅顆粒定向生長(zhǎng)和提升其致密度必將成為未來(lái)的研究熱點(diǎn)。此外,目前國(guó)內(nèi)的陶瓷基板技術(shù)整體落后,標(biāo)準(zhǔn)缺失,未來(lái)迫切需要加強(qiáng)核心技術(shù)與材料的研發(fā)力度,滿足飛速發(fā)展的市場(chǎng)需求。隨著國(guó)家政策大力支持,科技型產(chǎn)業(yè)向高質(zhì)量推進(jìn),陶瓷基板行業(yè)未來(lái)發(fā)展態(tài)勢(shì)也會(huì)持續(xù)上升,相信在未來(lái)我國(guó)在陶瓷基板行業(yè)會(huì)在全球站穩(wěn)自己的腳跟,具有自己的一席之地。


深圳市金瑞欣特種電路技術(shù)有限公司

金瑞欣——專(zhuān)業(yè)的陶瓷電路板制造商

通過(guò)公司研發(fā)團(tuán)隊(duì)的不懈努力,現(xiàn)已成功研發(fā)微小孔板、高精密板、難度板、微型化板、圍壩板等,具備DPC、DBC、HTCC、LTCC等多種陶瓷生產(chǎn)技術(shù),以便為更多需求的客戶服務(wù),開(kāi)拓列廣泛的市場(chǎng)。

在線咨詢在線咨詢
咨詢熱線 4000-806-106

? 2018 深圳市金瑞欣特種電路技術(shù)有限公司版權(quán)所有    技術(shù)支持:金瑞欣

返回頂部